Question		on	Answer	Μ	Guidance
1					
	а		photoelectric effect	B1	
	b		1. Individual photons are absorbed by individual electrons (in		max 4 from 6 marking points
			the metal surface)/ one to one interaction/AW	B1	
			2.Only photon with energy above the work function energy will		allow work function (of a metal surface) is minimum
			cause photoelectron emission/idea of threshold frequency	B1	energy for photoemission
			3.Photon energy is proportional to frequency	B1	allow shorter wavelength light has higher energy
			4. (therefore) blue photons with higher f/shorter λ will cause	B1	(hc/ λ) or higher frequency higher energy (hf)
			photoemission but red photons will not.		or red photons with lower f/longer λ
			5. hf – ϕ = KE _{max} is the equation resulting from conservation of	B1	<i>max</i> must be present to score mark; equation stated
			energy or resulting from the meaning of each term		in words: photon e. – w.f. = max ke of e
			6. A wave model does not explain instantaneous emission	B1	
					to score full marks (4) the answer must include
					two terms out of <i>photon</i> , <i>work function</i> and <i>threshold</i>
					frequency/wavelength (QWC mark)
	С	i	work function = $\phi = hc/\lambda$	C1	allow $\phi = hf (f = 6.25 \times 10^{14})$ and $f = c/\lambda$
			$\varphi = 6.6 \times 10^{-34} \times 3.0 \times 10^{6} / 4.8 \times 10^{-7}$	M1	
			$ = 4.1(4) \times 10^{-19} (J)$	A1	must show answer <u>initially</u> to 2 or 3 SF; ignore any
			0		final rounding down to 1 SF
		ii	$E - \phi = \frac{1}{2} mv^2$		
			$(5.2 - 4.1) \times 10^{-19} = 1.1 \times 10^{-19} = \frac{1}{2} \text{ mv}^2$	C1	can use 4.14 or 4 instead of 4.1
			$v = \sqrt{2 \times 1.1 \times 10^{-19} / 9.1 \times 10^{-31}}$	C1	
			$v = 4.9 \times 10^{3} (m s^{-1})$	A1	allow 5.1 x 10° (m s ⁻¹) using $\phi = 4 \times 10^{-19}$
					or 4.8×10^{3} (m s ⁻¹) using $\phi = 4.14 \times 10^{-13}$
	d	I I	electrons passing through a thin sheet of graphite	M1	any suitable/reasonably plausible situation
			are diffracted/produce diffraction rings on a fluorescent screen	A1	what is observed/ interpretation
		ii	$\lambda = h/mv$	C1	
			$\lambda = 6.63 \times 10^{-34} / 5.0 \times 10^{3} \times 9.1 \times 10^{-31}$	C1	
			$\lambda = 1.5 \times 10^{-9} \text{ (m)}$	A1	1.46 to 3 SF
			Total question 6	16	

Question		on	Answer	Marks	Guidance
2	а	i	energy ϕ required for an electron to escape from <u>metal surface</u> the minimum energy	M1 A1	inclusion of the word minimum in the sentence scores the second mark
		11	a <u>photon</u> with less than the threshold frequency f ₀ cannot cause electron emission/AW so work function = h (threshold frequency)	B1 B1	allow $\phi = hf_0$ when the symbols ϕ and f_0 have been defined somewhere in the question
		iii	$ \phi = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^8/550 \times 10^{-9} = 3.6 \times 10^{-19} (J) $	C1 A1	
	b	i	$ \begin{array}{l} KE_{max} = hf - \phi \ \text{or} \ hf = \phi + KE_{max} \\ hf = 6.63 \ x \ 10^{\text{-}34} \ x \ 3.0 \ x \ 10^{\text{8}}/440 \ x \ 10^{\text{-}9} = 4.5 \ x \ 10^{\text{-}19} \ J \\ ^{1}\!\!\!\!/_2 mv^2 = 9 \ x \ 10^{\text{-}20} \ giving \ v^2 = 1.8 \ x \ 10^{\text{-}19}/9.1 \ x \ 10^{\text{-}31} \\ v = 4.45 \ x \ 10^5 \ (m \ s^{\text{-}1}) \end{array} $	C1 B1 B1 A0	ecf (a)(iii) allow 4.5 or 4.4 x 10 ⁵
		ii	$λ = h/mv = 6.63 x 10^{-34} / 9.1 x 10^{-31} x 4.5 x 10^{5}$ $λ = 1.6 x 10^{-9} (m)$	C1 A1	allow 1.7 x 10 ⁻⁹ for v = 4.4 x 10 ⁵
	С	i	n = 3 <u>to</u> n = 2	B1	allow between or and when there is a downward arrow on Fig. 8.1
		ii	$E_{32} + E_{21} = E_{31}$ hc/ λ_{32} + hc/ λ_{21} = hc/ λ_{31} 1/590 + 1/440 = 1/252 so λ_{31} = 250 x 10 ⁻⁹ (m)	C1 C1 A1	accept equation using $1/\lambda$ or $1/590 + 1/440 = 1/\lambda_{31}$ allow 2 or 3 sf allow 2/3 for using 550 for 590 nm giving 244 nm
			Total	15	

Question		on	Answer	Marks	Guidance	
3	(a)		electrons have mass, photons have zero mass electrons have charge, photons are uncharged	B1 B1	max 2 marks from 3 marking points	
			photons travel at <u>speed of light</u>		lower speed of electrons not required for mark	
	(b)	(i)	energy = eV = $1.6 \times 10^{-19} \times 5000 = 8.0 \times 10^{-16} (J)$	C1 A1	accept 8 x 10 ⁻¹⁶ (J) (no SF error)	
		(ii)	$\frac{1}{2}$ mv ² = 8.0 x 10 ⁻¹⁶	C1		
			$v = 1.76 \times 10$ $v = 4.2 \times 10^7 \text{ (m s}^{-1}\text{)}$	A1	evidence of calculation required	
	(c)	(i)	electron wavelength depends on its speed/momentum	B1	accept de Broglie equation with labels defined	
		(ii)	$\lambda = h/mv$	C1	select formula	
			$= 1.7 \times 10^{-11} (m)$	A1	allow 1.8 x 10 ⁻¹¹ (m)	
	(d)		$E = hc/\lambda$	C1	select equation	
			$ = 2.5 \times 10^{-10} \text{ (m)} $	A1	answer 2.49 x 10^{-10} (m)	
	(e)	(i)	photoelectric effect / emission	B1		
		(ii)	$KE_{max} = hf - \phi \text{ or } hf = \phi + KE_{max}$ 9.0 x 10 ⁻¹⁹ - 7.2 x 10 ⁻¹⁹ = 1.8 x 10 ⁻¹⁹ (J)	C1 A1	can be copied from data sheet	
		(iii)	Electrons in the metal have a range of energies	B1	w.f. is minimum energy to escape from surface /AW	
			surface/AW	В1	<u>max</u> κ.e. given when w.t. subtracted from photon energy or photon gives all of its energy to one electron	
			Total	19		